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Cognitive maps
Origin of the term
Model

Cognitive maps, origin of the term

@ Cognitive maps:

e Tolman, E. C. (1948), Cognitive maps in rats and men,
Psychological Review, 55, 189-208,

the concepts of hidden learning of animals,

e Axelrod, R. (1976), Structure of Decision: the Cognitive
Maps of Political Elites, Princeton, NJ: Princeton University
Press,

causality relations in politics, economics, economy,

o Kosko, B. (1986), Fuzzy Cognitive Maps, International
Journal of Man-Machine Studies, 24, 65-75

causality relations in terms of fuzziness.
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Cognitive maps

Origin of the term
Model

A cognitive map with three concepts

weights: wj € {-1,0,1}
states/activations: node; € {0,1}
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Cognitive maps

Origin of the term
Model

Iron Curtain openness (4]

East German smblllty (7

East lifestyle hardship (6)
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Cognitive maps

Origin of the term
Model
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Fundamental quality measures

Fuzzy cognitive maps

N1 N2

NUMBER OF
PEOPLE IN
ACITY

MIGRATION
INTO CITY

SANITATION
FACILITIES

NUMBER OF
DISEASES

AMOUNT OF
GARBAGE

BACTERIA
PER AREA

Wiadystaw Homenda Cognitive Maps for Time Series Modeli



Model
Evaluating
Fundamental quality measures

Fuzzy cognitive maps
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Model
Evaluating

Fuzzy cognitive maps

Fundamental quality measures

weights activations responses goals
Wi1 Wiz ... Wyp X1, . g1
Woy Woo ... W , X: .
21 722 2| with |*2| produce |*%| modelling |92
Wn1 W22 “ e Wnn Xn. yn. gn.
details of computation

Wig Wia ... Wip| [ Xy, f(Wy1 X9+ WiaXo ...+ WipXn)) 1. 91.
Wy Wa2 ... Wen| |X2.| _ f(WarX1.+ WaoXp. ...+ WonXn.) | _|Va.| |92
Wni Wop ... Wpn| |Xn F(Wn1 X1+ WnaXo. ...+ WanXn.) Yn. gn.
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Fuzzy cognitive maps

activations targets:

X1 X2 X413 ... XM g1 G122 g1z ... gMm

X1 Xo2 Xoz ... XN2 921 G922 Ggo3 ... ON2

Xm Xn2 Xn3 ... XNn 9t G2 9n3 --- GNn
xz[x1 X2 X3 ... XN} [61 Go Gy ... GN}:G
W*[X1 X2 XN} = [Y1 Y2 YN} ~ [G1 Gg GN}

WxX=Y=~=G@G
n

yi = f( ZW/k Xki)
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Fuzzy cognitive maps

@ Examples of squashing functions:

f:(—o0,+00) — [0,1]

1
i idal: f(x) = ———
e sigmoidal: f(x) =l
0 T X< —7/2,
e sinus: f(x) = ¢ I(sin(t-x)+1) —7m/2<7-x < pi/2
1 T-X>7/2
0 T-X< -1,
o linear: f(x) = ¢ J(r-x+1) -1<7-x< 1
1 T-X>1
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Model
Evaluating
Fundamental quality measures

Fuzzy cognitive maps

A problem
Given
@ activations X,
@ targets G
design a fuzzy cognitive map W modelling a given problem,
i.e. such that:
WxX =G
or at least such W’ that
WxX=Y

where Y isascloseto G as possible
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Fuzzy cognitive maps

Evaluations

WxX=Y=G
responses targets
Yii Yi2 Yizs ... Vin g11 G912 Gi3 ... GiIN
Yo1 Yoo Yo3 ... Yon 21 Qo2 Q23 ... Q2N
Ym Yn2 Yn3 --- Yon 91 G2 gn3 --- 9nN
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. Model
Fuzzy cognitive maps

Evaluating

Fundamental quality measures

Fundamental quality measures

WxX=Y=G

responses
Y11 Yi2 Y13 Yin J11
Yo1 Yoo Yo3 Yon 21
Ym Yn2 Vn3 YnN 9n

Response evaluation fundamentals:

ZZ

/ 1i=1
° MAXSE:max{

@ MSE = g,,

- gj)°
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Model
Evaluating
Fundamental quality measures

Fuzzy cognitive maps

Model construction

Map reconstruction from data:
@ Data:
o X =[Xi,Xz,...,Xn] - activations,
o G=1[Gy,Gy,...,Gp]| -targets,
e W - random weights, uniform distribution.

@ Map reconstruction:
o WxX=Y
Y =[Y1, Ys,..., Yn] as close as possible to G =[Gy, Go, . . ., Gn]
e minimization of objective function,

@ Results:
@ objective function is a choice of a quality measure (MSE, MSEK,
etc.),

e gradient, PSO or other optimization methods,
e "as close as possible" in terms of a quality-measure.
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

Time series:
C1,C2,C3,C4,. ..

Activations: -,

X1 = [C1>027"'7Cn]

-
X2 =1[c2,C3,...,Cny1]
Xy = T
‘N = [CN, CN415 - - - CNgn—1]

Targets:

Gi1=[Co,C3,--Cnp1]”
Go=1[c3,Ca,...,Cnysa]”

;
G.N = [CN+1,CN42; - - -, CNn]
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

Modeling considered so far:

Vi = WX,
n

yi = f(W, *X/)—f(z Wik Xk/)
k=1

Adding bias:
Y.j: f(B+ WXI)
n
Vi = f(b; + VV,*XJ): f(b/—i-ZW/k‘ij)
k=1
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

W43‘
\W31 \W32 \

Prediction - MSE as objective function
Evaluating results - MSE
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

Annual rainfall in London from 1813-1912
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

Number of births per month in New York city, 1946-1959
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

Campito tree rings, which indicate tree growth, 1907-1960
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

FCM n=5 for births time series
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

MSE*100 for time series forecasts with different map sizes with and without bias.

rain birth tree rings

map no with no with no with
size || bias | bias bias | bias bias | bias

169 | 169 || 1.00 | 0.89 | 1.00 | 1.36
1.70 | 1.70 || 0.98 | 0.86 || 1.15 | 1.78
1.71 | 1.72 || 0.96 | 0.78 || 1.80 | 2.06
1.77 | 1.80 || 0.92 | 0.78 || 219 | 2.33
182 | 1.87 || 091 | 0.75 || 1.96 | 2.07
186 | 1.89 || 0.89 | 0.77 || 266 | 2.74
192 | 192 || 0.89 | 0.73 || 292 | 2.97
181 | 1.86 || 0.89 | 0.68 || 2.99 | 3.11
11 1.67 | 1.71 089 | 0.69 || 289 | 3.01
12 || 164 | 166 || 0.89 | 0.74 || 285 | 3.05
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Model with fuzzy cognitive map
Time series models Empirical evaluation

Fuzzy cognitive map as a model of time series

Comparison of MSE obtained for three time series with different
modeling and forecasting methods.

MSE*100 rain births tree rings
method train|forecast||train|forecast||train |forecast
ARIMA par=(1,0,0) |[{1.18] 2.15 ||0.13] 0.59 |/1.30| 3.51
Holt-Winters 1.27| 1.77 ||0.37| 0.18 |{1.31] 4.60
FCM, n=5, no bias ||1.20| 1.71 |/0.34| 0.96 [|4.03] 3.71
FCM, n=5 with bias|[1.17| 1.72 ||0.21| 0.78 |/5.44| 2.33
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Concept level of time series
Understanding time series
Processing time series at concept level

Concept level of time series

@ weather will be very/moderately hot
in south part of Poland tomorrow

@ level of rivers are in lower part of the scale and is equal:

e 452 centimetres of Vistula river in Sandomierz
its increase is 23 centimetres during 24 hours
o ...

concepts/granules level

numerical values level
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Concept level of time series
Understanding time series
Processing time series at concept level

Handling time series

Time series representation in the space
Amplitude/Amplitude change/Change of amplitude change

@ ai,ap,as, ay, ... - amplitude
@ Jao,das,day, ... - amplitude change

@ da» = a — ay,
@ das = as — ao,
@ das = as — as,

@ ddas,dday, ddas, . .. - change of amplitude change

@ ddaz = das — dao,
@ ddas = das — das,
@ ddas = das — day,

Wiadystaw Homenda Cognitive Maps for Time Series Modeling



Concept level of time series
Understanding time series
Processing time series at concept level

Handling time series

Synthetic time series were constructed according to the

following procedure:

@ select base sequence

@ replicate the base sequence to the total length 3000,

@ add a random distortion drawn from the normal (Gaussian)
probability distribution with mean equal to 0
and standard deviation equal to 0.7.

3-dimensional dynamics representation

of the 2648-based synthetic time series

time ‘ 1 2 3 4 5 6 7 ... 2998 2999 3000
amplitude | 2 6 4 8 2 6 4 8 e 4 8
amp.change | ~ 4 -2 4 -6 4 -2 4 e -2 4
changeofa.c. | ~ ~ -6 6 -10 10 -6 6 ... -6 6
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Concept level of time series
Understanding time series

Processing time series at concept level

Handling time series

amplitude

delta

1 101 201 301 401 501 601 701 801
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Concept level of time series
Understanding time series
Processing time series at concept level

Transformation to concepts space

amplitude

@ One dimensional clustering:

e amplitudes: Small, Moderately Small, Moderately High, High,
o deltas: High Negative, Small Negative, Moderately Positive.

@ Two dimensional clustering:
(S,HN), (S,SN), (S,MP), (MS,HN), ..., (H,MP).
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Concept level of time series
Understanding time series

Processing time series at concept level

Transformation to concepts space

(M+MSH) .

change of amplitude

— %, "\ TS MMHL)
c  -10%
o V0 2 4 6 8 1
2,
2

amplitude & amplitude

(=)

-15-10-50 51015
change of amplitude change

The 268-based synthetic time series

Wiadystaw Homenda Cognitive Maps for Time Series Modeli



Concept level of time series
Understanding time series

Processing time series at concept level

Transformation to concepts space

change of amplitude

change of amplitude change

-20-10 0 10 20

amplitude amplitude

The 15739-based synthetic time series

Wiadystaw Homenda Cognitive Maps for Time Series Modeling



Concept level of time series
Understanding time series

Processing time series at concept level

Transformation to concepts space

Strength of concepts

amplitude

amplitude
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Concept level of time series
Understanding time series

Processing time series at concept level

Transformation to concepts space

Strength of concepts

#1, #2, .. - order by the global distance index
#1, #2, .. - order by the membership index
=
=
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= 4
= 4
ol
T T T T T T ' T T T T T T T
0 2 4 6 8 10 -2 0 2 4 6 g8 10
current current

Ranking of concepts for the 268 and 15739-based time series.
Best concepts are emphasised with coloured background.
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Concept level of time series

Understanding time series
Processing time series at concept level

Concepts evaluation

N
M(v)) = Zx,-j sum of membership degrees to the concept
j=1

N

GD(vj) =Y e I2=vil  sum of distances to the concept
i=

where:

N - number of points, v; - j-th concept, z; - i-th data point
xj - i-th activation corresponds to the j-th concept

past

current
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Concept level of time series
Understanding time series
Processing time series at concept level

Understanding time series

3-dimensional dynamics representation
of the 268-based synthetic

tme| 1 2 3 4 5 6 7 ... 2998 2999 3000
amplitude | 2 6 8 2 6 8 2 ... 2 6 8
amp.change | ~ 4 2 -6 4 2 -6 ... -6 4 2
changeofa.c. | ~ ~ -2 -8 10 -2 -8 ... -8 10 -2
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Concept level of time series
Understanding time series

Processing time series at concept level

Understanding time series

(S+,MH+)

past

(MH+,M+)

(M+,S+)

On the left: FCM with 3 nodes trained for the 268 time series. Nodes
are black squares. Labels are their linguistic description.

On the right: the actual cycle of values in the 268 time series. Positive
linkages in the map form the same cycle as sketched-on the left.
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